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Abstract

Blockchains have been used as mechanisms to store memoised rep-
resentations of history since the very first Bitcoin block [47]. Despite
blockchain technology’s clear potential in the area of resilient archive
construction without single points of failure, advances in on-chain data
storage techniques have remained elusive. This paper addresses this
problem through the introduction of the Arweave protocol: a new
mechanism design-based approach to achieving a sustainable and per-
manent ledger of knowledge and history. As well as outlining incentive
mechanisms for achieving sustainable data permanence, this paper out-
lines key technologies to allow scalable on-chain storage.
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1 Introduction

1.1 Motivation

In this work we present the Arweave protocol, a new blockchain-like data
structure called the blockweave. The protocol is designed to provide scalable
and permanent on-chain data storage in a sustainable manner. The block-
weave forms the underlying data structure of the permaweb - the array of
data, websites, and decentralised applications hosted on the blockweave,
accessible on normal web browsers.

In this paper, we will introduce several technological innovations that, to-
gether, allow Arweave to offer unique utility in the on-chain data storage
space, including: blockweave, blockshadows, AIIA, decentralised content
policies, and their mechanism design.

Our collective ability to store and share information between individuals and
across time to new generations has been essential to humanity’s successes.
Despite our best efforts, however, throughout history, our methods of storing
knowledge have been vulnerable to destruction and the information subject
to loss or alteration – sometimes with intentional malice, and more often
accidentally. Just as in the ancient world, modern history is full of examples
of the destruction, alteration, and loss of vital information, from fires at
libraries and archives [41, 22, 35], to book burning in authoritarian states
[57].

Today, with a wealth of digital information surrounding us, we can easily
begin to assume that because information is readily available online today, it
can’t be altered or lost. Unfortunately, this is foundationally untrue [21, 37].
Although the internet is a wildly successful system of distributed information
dissemination, it currently lacks a complementary system of decentralised,
permanent knowledge storage.

Almost all of the pages making up the web today are housed within cent-
ralised data stores, each typically controlled by one organisation or even
one individual. This means that when accessing information online, we are
wholly reliant on these centralised organisations and individuals continu-
ing to allow us to do so. Access can be revoked at any time, or the data
can simply be unintentionally lost or degraded. Serving information on the
internet incurs server and other upkeep costs, meaning whole websites, ap-
plications, and information stores can simply disappear when funds are no
longer available for maintenance. Another significant risk of this centralised
data storage model is that the data is vulnerable to manipulation by these
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individuals or organisations. Such manipulation tactics typically include the
modification of documents during their storage [34, 48]. Arweave offers a
solution to this problem.

Further still, a number of governments are increasing their efforts to censor
and remove access to politically sensitive information on the internet [68,
6, 1]. Similarly, with media and news organisations, while we once held
physical and irrevocable copies of their publications, we now simply access
the information digitally and then immediately discard it. It has become
commonplace for media organisations to update the contents of their articles
over time. This can cause vital context and content to be lost or obscured.

In order for an information store to be truly permanent, it must be both re-
silient and decentralised. Blockchain technology has much obvious promise
in the area of resilient, decentralised information preservation [14], as a key
feature of the technology is that all data inside the blockchain is immutable,
and cannot be altered once it is stored. However, traditionally, such tech-
nology severely lacks scalability which clearly limits its utility for storing
significant quantities of data.

High transaction fees also inhibit typical blockchains’ ability to scale to
accommodate large amounts of data. For instance, with the Ethereum net-
work, although it is technically possible to store data on-chain, the high fees
make this impractical for most real-world use cases.

As the demand for data storage grows exponentially [56], the need for a
decentralised, low-cost data storage protocol that can scale is a necessity.

Once a piece of data is stored in the data structure, it is cryptographically
entangled with every other previous block in the network. This ensures that
any attempt to change the contents of the document will be automatically
detected and consequently rejected by the network. Therefore, the Arweave
offers a robust way of permanently storing data on-chain, beyond the reach
of accidental or intentional data loss or manipulation.

Owing to the decentralised and cryptographically verified nature of the per-
maweb, it is beyond the reach of any organisations or groups that might
conspire to censor its contents [36]. As such, the Arweave drastically re-
duces the possibility of an Orwellian ’memory hole’ [51] from occurring. In
this way, we envisage the Arweave protocol as a useful tool in the preserva-
tion of the freedom of information, and subsequently in the strengthening
of institutions and democratic processes that depend upon it.

However, in order for the Arweave protocol to fulfil its potential and enable
the permaweb to become the basis of the new, decentralised web, widespread
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developer adoption of the protocol is essential. As such, the protocol is
designed to make it simple, and both cost and time efficient for developers
to store content on the network. Arweaves HTTP API makes it extremely
simple to build decentralised web applications on top of the blockweave.
In order to make permaweb development as simple as possible, developers
can use all of their favourite familiar web technologies (including HTML,
Javascript, and CSS) and deploy to the permaweb in minutes.

For the end-users themselves, the permaweb built on the Arweave protocol
offers several major advantages. Firstly, as we have touched on previously
in this paper, users are guaranteed reliable, immutable access to permaweb
content. Of especially great importance is users ability to reliably maintain
access to all permaweb applications and websites themselves, not simply the
content they display, forever. This means that, once published, a permaweb
app cannot be unpublished, helping to maintain strict application integrity
[5]. This allows users to exercise meaningful choices based on their personal
preferences.

The speed of access to permaweb content is also incredibly important for
the user experience, and additionally for adoption of the Arweave protocol
and permaweb itself. The Arweave protocol is the only system to offer
truly permanent and decentralised data storage. The protocol is designed
to robustly incentivise Arweave nodes to share data around the network
quickly, a key aspect of the protocols mechanism design explained in section
6 describing the AIIA meta-game, and its implementation in the wildfire
mechanic.

The Arweave protocol and its family of technologies have all been engineered
to ensure that each node’s behaviour is likely to contribute positively to the
utility of the network itself. In this way, the protocol design is Dominant
Strategy Incentive Compatible (DSIC, [58]), a vital facet of a healthy, long-
term decentralised and incentive-driven network such as Arweave.

As such, the Arweave protocol is designed to address many of the short-
comings in both traditional archiving systems and also the scalability issues
found with many typical blockchain protocols. The protocol is designed to
maximise the quality and efficiency of both developer and end-user experi-
ences, which is vital when aiming for wide-scale adoption.

1.2 Structure of This Document

1. Introduction

2. Arweave: Key Contributions
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3. The Network: Mechanism Design

4. The Node: Behaviours for Protocol Compliance

5. Decentralised Content Policies

6. Adaptive Mechanism Design in Arweave: Adaptive Interacting Incent-
ive Agents (AIIA)

7. Arweave Protocol Interoperability and the Permaweb

8. Future Work

9. Appendices

This document is split into eight sections, plus an appendix section. Here
in section 1, The Introduction, we establish the main motivations and goals
of creating the Arweave protocol: providing permanent, resilient storage.

Section 2 highlights the novel key contributions the Arweave protocol offers
to the decentralised data storage space. The specific innovations described
include: the blockweave, the Proof of Access consensus mechanism, the
recall block, memoisation of state, blockshadows, the Adaptive Interacting
Incentive Agents (AIIA) meta-game, and wildfire, an implementation of
an AIIA game. This section explains how the blockweave differs from a
traditional blockchain data structure, as well as the implications and benefits
of these differences.

Section 3, The Network: Mechanism Design, establishes that distributed,
decentralised storage is necessary to meet the requirements of permanence
and resilience. Taking a game-theoretic and mechanism design approach,
this section describes how the Arweave protocol is carefully engineered to
balance incentives and constraints to produce a network that is Domin-
ant Strategy Incentive Compatible (DSIC, [58]), ultimately maximising pro-
social utility of the network’s overall output.

Section 4, The Node: Behaviours for Protocol Compliance, looks at the
network and the protocols from the perspective of how nodes behave within
these systems. This section covers in detail the main activities of a node:
mining blocks, receiving and validating blocks and transactions, and serving
blocks and transactions. To illustrate how the Arweave protocol promotes
pro-social behaviour, this section includes some examples of what happens
when a node tries to “cheat”.

Section 5, Democratic Content Policies, describes the mechanism by which
Arweave miners - the data storage providers in the network - can accept,
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store, and share only the content they choose to. This section describes
the three primary aspects of content policies: the voting phase, the storage
phase, and the incentive (or, mechanism) design. Here, you will discover
how the blockweave enables miners to democratically decide which storage
content they collectively do or do not wish to store inside the network.

Section 6, covering the phenomenon of Adaptive Interacting Incentive Agents
(AIIA), describes how the mechanism design and the technical implementa-
tion of the Arweave protocol combine to create a powerful web of mutually
beneficial and counter-balancing incentives. The powerful emergent effects
of this interaction are dissected, demonstrating how the protocol produces
high levels of positive externalities – including pro-sociality between nodes
and users alike – without forcing compliance on agents in the system.

Section 7, Arweave Protocol Interoperability and the Permaweb, describes
all of the key technical and infrastructure components that together make up
the Arweave protocol, and consequently, the permaweb itself. This section
describes how fundamentally, the protocol operates in a trustless, serverless,
and distributed manner. Additionally, the specific permaweb developer- and
miner-oriented technologies of the protocol are enumerated, including: the
HTTP API, the client-server, gateway nodes, hybrid architectures, ArQL,
Arweave DNS & TLS, and a number of live permaweb applications.

Section 8, Future Work, explores the core Arweave development team’s views
on what additional technologies may be added to the Arweave protocol to
further enhance its unique offering. Firstly, the section describes succinct
proofs of access, whereby data storage remains resilient, verifiable, and se-
cure, but the amount of data contained in transactions passed around the
network is reduced, increasing efficiency. Secondly, a proposed reduction
in the storage space dedicated to maintaining full wallet logs is considered.
Finally, a proposal for a potential fast find mechanism, is discussed in de-
tail, which would ultimately accelerate how quickly data is located in the
network when requested.

Section 10, The Appendices, enumerates the specific contents of a range of
novel Arweave data structures, including block, blockshadow, and transac-
tion data structures, as well as providing key datasets.

2 Arweave: Key Contributions

This section looks at unique innovations engineered for inclusion in the Ar-
weave protocol, how these impact usability, resilience, and permanence of
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data storage on the Arweave network.

2.1 The Recall Block, Proof of Access, and the Blockweave

In Arweave’s blockweave data structure each block is linked to two prior
blocks: the previous block in the ’chain’ (as with traditional blockchain
protocols), and a block from the previous history of the blockchain (the
’recall block’). Consequently, the Arweave blockchain data structure is not
strictly a chain (i.e., a singly linked list) but it is a slightly more complex
graph structure that we call the blockweave.

The recall block is selected based on a hash of the previous block and the
previous block’s height. This results in a deterministic but unpredictable
choice of block from the weave’s history.

In order to mine or verify a new block, a node must have that block’s recall
block. Demonstrating proof that the miner has access to the recall block
is part of block construction (and conversely, verifying this proof is part
of validating a new block). Proof of Access (PoA) is an enhancement of
Proof of Work (PoW) in which the entire recall block data is included in the
material to be hashed for input to the proof of work. For further details of
the block construction process, see section 4.1.1.

Requiring PoA incentivises storage as miners need access to random blocks
from the blockweave’s history in order to mine new blocks and receive mining
rewards.

The PoA algorithm also incentives miners to store ‘rare’ blocks more than it
incentivizes them to store well-replicated blocks. This is because when a rare
block is chosen, miners with access to it compete amongst a smaller number
of miners in the PoW puzzle for the same level of reward. As a consequence
of this, miners that prefer to store rarer blocks on average receive a greater
reward over time, all else being equal.

PoA takes a probabilistic and incentive-driven approach to maximising the
number of redundant copies of any individual piece of data in the network.
By contrast, other decentralised storage networks specify an exact number of
redundant copies that should be provided for a given piece of data, and me-
diate this using a system of ‘contracts’[12]. The Arweaves competition-based
approach is tailored such that it is simpler and more versatile, performing
flexibly in both well-functioning and poorly-functioning environments.

For example, in a network storing 1 PB of data where only 2 PB of data stor-
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age capacity is available (an ‘unhealthy’ network) the PoA incentive struc-
ture pushes miners to make sure they have copies of data that few other
miners are storing, reacting flexibly to the situation. In a well-functioning
network where, for example, only 1PB of an available 100 PB storage ca-
pacity is in use, the Arweave also pushes miners to make larger quantities
of redundant copies of data in the network. As well as increasing security
and stability in such a situation, this approach to redundancy maximisation
through incentives also leads to dramatically faster lookup and access times.

2.2 Memoisation of State

In the standard blockchain paradigm (e.g. in the Bitcoin blockchain[47]),
the blockchain is a concrete object replicated entirely on every full node
in the network. Each full node must store the blockchain in its entirety.
As explained in the previous subsection, with Arweave this is not necessary.
The Arweave’s novel data structure, the blockweave, does not require miners
to store every previous block. In order to achieve this, all data required to
process new blocks and new transactions is memoised into the state of each
individual block (see section 10.2.1 for details of the block data structure).

As a consequence of this memoisation technique, new users are able to join
the network by downloading only the current block from its trusted peers, or
verifying some backward portion of proofs of work (the larger the quantity
verified the lower the trust required to join the network). This block data
structure includes, among other things, the Block Hash List (BHL) and
the Wallet List (WL). Possession of the Block Hash List allows old blocks
to be requested and/or verified. Possession of the Wallet List allows new
transactions to be verified without possessing the block in which the wallet’s
last transaction was included. The Block Hash List and the Wallet List are
kept up to date by miners and synchronised by the network when mining and
validating new blocks (see section 4 for details of node behaviours during
Arweave mining).

This reduces barriers to entry for miners – barriers of storage space, pro-
cessing power, and time – allowing the blockweave to scale to sizes larger
than the capacity of any individual miner. As the Arweave network in-
tends to scale past the size, scope, and volume of the traditional web, this
mechanism is vital to allowing miners to practically join the network.

Parties interested in verifying the full blockweave from the first block to the
current block, and in reconstructing the entire blockweave locally can do
so in a number of ways. For example, by following the link in each block
to that block’s previous block, or, by requesting a Block Hash List from a
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trusted peer, verifying it against the unbalanced Merkle tree hash list in the
current block, and downloading the blocks directly.

Once joined and active, there is no need for a node to store the entire
blockweave at all, however, they are rewarded by the Proof of Access mech-
anism relative to the proportion of the blockweave they store. The Domin-
ant Strategy Incentive Compatible (DSIC[58]) nature of the network gives
network-level guarantees of storage and replication. This frees each indi-
vidual node to prioritise and optimise their own storage according to their
own preference and resources.

A blockchain is typically a very large distributed data structure, and down-
loading the full blockchain can take a long time and consume a great deal
of computing resources[13]. Unlike traditional blockchain systems, Arweave
does not have a typical notion of full and light clients – merely clients that
downloaded more or less of the blockweave. With Arweave, full synchron-
isation is not a risk or an obligation, but an optional upgrade path for which
miners receive higher rewards.

2.3 Blockshadows

In a traditional blockchain network, when a new block is mined, each entire
block is distributed to every node in the network, no matter how many of
the block’s transactions that node already possesses. This significantly limits
the amount of data that can be included in a block, as all of the data needs
to be gossiped around the network during consensus. If too much data is
transferred during block acceptance, the time required to achieve consensus
becomes too large and forks emerge in the network. The probability of a
fork emerging in a blockchain network during consensus is as follows:

P (fork) =
Bdist time

Btime
(1)

Subsequently, as the block distribution time is linear with the block’s size, so
too is the size linear with the likelihood of forks emerging. As the Arweave
protocol stores data inside the blocks themselves, the normal blockchain
trade-off between P (fork) and Bmax size is not acceptable.

Therefore, the Arweave protocol takes a new approach to data distribution:
blockshadows, building on the work of Graphene[52] and compact blocks
(BIP-152)[19].

Blockshadowing works by decoupling transactions from blocks, and only
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sending a minimal ’blockshadow’ between nodes which allows peers to re-
construct a full block, rather than transmitting the full block itself. These
blockshadows contain a hash of the Wallet List and Block Hash List, and
list of transaction hashes (instead of the transactions inside a block). From
this information (typically a few kilobytes), a node that already holds all of
the transactions inside the block, plus an up-to-date Block Hash List and
Wallet List can rapidly reconstruct an entire block of almost arbitrary size.
Using this mechanism, the bottleneck for block size becomes the number of
transaction IDs that can be included, and the length of time required to
reconstruct a block from its constituent transactions.

In order to facilitate block distribution and lower communication overhead,
nodes immediately share transactions with one another, but only attempt
to place transactions inside a block once they have a high degree of certainty
that other nodes in the network also have a copy of the transaction. Further
improving on the work presented in Graphene[52] and BIP-152[19], block-
shadows introduce a mechanism design-based AIIA game for calculating the
likelihood that other nodes in the network already have local access to a
block. Because nodes do not attempt to fetch missing transactions from one
another if they do not have them locally, nodes are incentivised to act in
the following way:

1. Not to mine transactions into blocks too early, as this leads to their
blocks being rejected.

2. Not to mine transactions into blocks too late, as other miners in the
network are likely to mine them beforehand.

The result of this blockshadowing system is a fast and flexible block distri-
bution process that allows transactions to be mined into a block as fast as
they can be distributed around the network, and consensus about blocks to
be achieved at near network speed.

2.4 Content Policies and Censorship Resistance

The Arweave protocol avoids making it an obligation to store everything,
which in turn allows each node to decide for itself which blocks and trans-
actions to store. This increases the censorship resistance of the network[3]
as nodes are not forced to store material they don’t want to.

The default behaviour of the network is a large number of replications of
each single accepted transaction. The current replication rate in the network
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exceeds 97%. As a necessary part of block validation, transactions are stored
on-chain and replicated throughout the network, so the data is distributed
widely in geographic terms. Storage is guaranteed probabilistically and at
the network level (rather than on a per-miner basis), consequently strength-
ening these guarantees, making them robust, and resilient to interference.
These advantages are beneficial to both end-users, for whom data access is
faster and more reliable than other alternatives, and also for miners, who
are able to select which blocks and transactions they wish to store, allowing
them to implement content policies that meet their preferences (see section
5 for more information on such policies).

2.5 Wildfire

In the wildfire mechanic, a form of AIIA game (see section 6), each node in
the Arweave network ranks its peers based on two primary factors. Firstly,
the peer’s generosity - sending new transactions and blocks, secondly, the
peer’s responsiveness - responding promptly to requests for information,
in a similar mechanism to Bittorrent’s optimistic tit-for-tat algorithm[18].
The node then gossips preferentially to higher-ranked peers. This allows
a node to rationalise its bandwidth allocation. It also has the effect of
promoting pro-social behaviour on the part of nodes generally, given the
practical implications of how every peer interacts with every other peer.

See section 3.4 for further information about the wildfire mechanic. See also
section 6 on the Adaptive Interacting Incentive Agents (AIIA) meta-game,
of which wildfire is an example agent.

3 The Network: Mechanism Design

The network is organised into two categories of actors: miners and users.
Users pay tokens (AR) to add data to the network. Miners in the network
receive these tokens for mining new blocks, which requires them to store and
serve data. It is possible for a single wallet owner to be both a user and a
miner. The miners receive these rewards indirectly from users in the system
that pay tokens to add data to the network. The assignment of tokens from
users to miners is mediated by the network as a whole through mining and
validation of new blocks.

Data intended for addition to the network is encapsulated in transactions,
which are mined into blocks. A block is both a container for a set of trans-
actions, and a memoised representation of the state of the network after the
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inclusion of the accepted transactions. From the user’s perspective, there
are two types of transactions in the network: data transactions and value
transactions. A user can initiate a data transaction to store data in a block.
Value transactions contain only the change of AR balances in two wallets: a
decrease in the wallet that initiated the transaction, and an increase in the
wallet that received the transaction. In terms of technical implementation,
all transactions in the Arweave network are the same. Every transaction
can have an optional recipient field, and an optional data field. This means
that transactions can be highly flexible, for example, they can be used to
send mail between two participants (see section 7.5 for a range of example
permaweb applications, including Weavemail). See section 10.2 for full de-
tails of block and transaction contents, as well as section 4 for details of how
nodes manipulate these data structures.

3.1 Difficulty: Regulating the Block Generation Rate

In order to regulate the block generation speed in the network, the Proof
of Access (PoA) algorithm allows for variable difficulty settings. PoA chal-
lenges with higher difficulty take longer to compute. ‘Difficulty’ is a network
statistic, included in each block[47].

If the generation rate of blocks in the network exceeds the target frequency,
the difficulty of the PoA puzzles for future block generation is increased.
Similarly, as the block generation speed in the network decreases, the diffi-
culty setting is adjusted downwards.

In this way, the decentralised network of miners is able to regulate the block
generation rate (and subsequently, various reward emission rates – detailed
below) regardless of the number of nodes in the network and the amount of
computational power and storage available to solve the PoA puzzles.

3.2 Token Economy

3.2.1 Paying the Network, Rewarding the Miners

The Arweave network uses a token, the scarcity of which is enforced through
the consensus mechanism of the blockweave data structure. The token’s
main unit is the AR, with sub-unit Winston, where 1 AR = 1,000,000,000,000
Winstons.

As the token in the system is scarce and is used for two valuable functions,
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that of encoding data into the system and of rewarding miners, the token
itself has a non-zero financial value. Although the token primarily derives its
utility from being the only instrument of paying for permanent data storage,
it can also be used as a means of value exchange.

55 million AR were created in the genesis block at network launch on the
8th June 2018. A further 11 million AR, an additional 20% of the genesis
block supply, are being introduced into circulation gradually as block mining
rewards. Consequently, the maximum circulation will be 66 million AR. AR
tokens in circulation are held either in wallets or in the endowment pool. See
section 3.2.3 for details of the inflation function and the endowment pool.

In order to write a transaction into a block, a user has to pay some AR
as a transaction fee. This transaction fee is not transferred in its entirety
directly to a miner of this block, unlike in traditional blockchain systems[47,
67]. Rather, most of the transaction fee is contributed towards a storage
endowment, which is distributed to the wallets of miners over time according
to the mechanism described in section 3.2.3.

3.2.2 Cost of Perpetual Data Storage

As the Arweave’s core function is to provide permanent storage to its users,
a mechanism of pricing this storage must be defined.

As a prerequisite to the calculation of the cost of storage of a piece of data
in perpetuity, we must first define the cost of storage of data for a single
time period:

PGBH =
HDDprice

HDDsz ∗HDDmtbf

where

PGBH = Price of storing 1GB of data on 1 hard disk drive for 1 hour

HDDprice = Lowest available market price of buying a hard disk drive

HDDsz = Capacity of this hard disk drive

HDDmtbf = Mean time between failures of hard disk drives
(2)

Since the inception of digital data storage techniques, the GBh cost of com-
mercially available storage media has been decreasing at a significant rate
(see figure 1). Over the past 50 years, the average annual rate of decline of
GBh cost has been 30.57% (dataset provided in appendix section 10.1).
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Figure 1:

Carefully and conservatively extrapolating the pattern of the decreasing
cost of data storage presents the opportunity to provide a finite cost for the
indefinite storage of data.

The cost of perpetual storage can be modelled as the infinite sum of the
declining storage costs over time:

Pstore =
∞∑
i=0

(Datasize ∗ PGBH [i])

where

Pstore = The perpetual price of storage

PGBH [i] = The cost of storing 1 GB for an hour at time i

Datasize = The quantity of data to store

(3)

3.2.3 Transaction Pricing

Inline with the costing model described above, the Arweave protocol em-
ploys a storage endowment mechanic. This mechanic allows the network to
distribute appropriate quantities of tokens to miners over time, in order to
sustainably incentivise the perpetual storage of arbitrary quantities of data.

Transaction pricing in the Arweave network comes in two components: a
highly conservative estimate of the perpetual storage cost, and an instantly-
released transaction reward to incentivise a miner to accept new transactions
into the new block.
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Transaction pricing is calculated as follows:

TXcost = TXsize ∗
∞∑

i=BH

PGBB[i]

TXreward = TXcost ∗ Cfee

TXtotal = TXcost + TXreward

where

TXcost = The sum cost to the network to service the TX perpetually

TXsize = Size of the TX data segment (in GB)

PGBB[i] = The price of storing 1 GB for 1 block period at height i

TXfee = Instant reward to miner for including the TX in a block

Cfee = Constant defining instant reward to miner

TXtotal = Total paid by the user to the network for the TX
(4)

3.2.4 Storage Endowment

In order for mining of the Arweave to remain profitable and sustainable over
time, the following basic principle must hold: the reward emitted by the
network at any given block must be greater than the sum value expenditure
required to maintain the blockweave for that period. Specifically:

∀B ∈Wblocks Rtotal >= Wsize ∗ PGBB (5)

While this constraint is naturally satisfied by consistent release of tokens
from the endowment (assuming a stable token price in fiat terms and ac-
curate PGBB predictions), the protocol avoids releasing endowment tokens
when miners have already surpassed profitability through other means. This
mechanism further strengthens the economic stability of the network against
fluctuations in token price and storage medium pricing. In order to achieve
this stabilising effect, the mining reward mechanics only take from the en-
dowment in instances where the value expenditure required to maintain the
blockweave exceeds the value emitted by the inflationary block reward, and
instantly-released transaction fees.

The reward for a miner producing a block is composed of three parts:

18



Rtotal = Rfees + Rinflation + Rendowment (6)

Rfees is the sum of all TXfee quantities charged for the transactions mined
into a block:

Rfees =

|BTXs|∑
i=0

BTXs[i]fee (7)

The inflation reward is pre-defined for every block, gradually decreasing at
a rate dependent only on the block height, as follows:

Rinflation =
GAR ∗ 0.2 ∗ ln 2 ∗ 2−BH

Bny

where

GAR = Amount of AR in the genesis block: 55,000,000

By = Number of blocks in a year: 262,800

BH = The height of the current block

(8)

As outlined above, the quantity to be taken from the endowment is only non-
zero in the event that Rinflation and Rrewards do not exceed the cost to the
network of maintaining its storage burden for the block period. Given the
extremely low cost of storage relative to hashing (see section 3.3 for details of
Proof of Access value expenditure equilibria), the storage burden will likely
not reach a point at which taking from the endowment is required by miners
until the permaweb is many times larger than the current ‘surface web’ (as
estimated by the size of The Internet Archive’s annual web scrape[62]). This
means that the storage endowment will gain a significant ‘float’ of tokens
(likely built up over a number of years) before it is ever necessary to regularly
use it in practice.

The total number of tokens to be taken from the endowment is calculated
in the following manner:

Rendowment = Prop(max(0, (Wsize ∗ PGBB)− (Rinflation + Rfees))) (9)

The Prop function takes the base reward from the endowment and makes
it proportional to the size of the recall block that was required to mine the
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new block, relative to the average size of a block in the Arweave network.
This ensures that in the event that a single block is significantly larger or
smaller than other blocks, miners are appropriately incentivised to store the
data in the network evenly.

Prop(AR) = min(Endowment[i],
Brecall sz

Bavg sz
∗AR)

where

Brecall sz = The size of the required recall block

Bavg sz =
Wsize

Bheight

(10)

Finally, the endowment to be transferred to the next block can be calculated:

Endowment[BH+1] = Endowment[BH] −Rendowment +

|TXs|∑
i=0

TXs[i]cost

where

BH = current block height

Endowment[BH] = Endowment size (in AR) at block height BH

Endowment[BH+1] = Endowment size (in AR) at the next block height
(11)

3.2.5 Future Data Density and Reliability Expectations

Data density or storage medium reliability increasing (and consequently,
PGBB decreasing) is important to the arguments made in the above sec-
tions. As seen in figure 1, this pattern has been sustained and consistent
for over 50 years. Even though historical analysis alone does not guarantee
the continuity of this trend, we note a number of compelling factors which
indicate that it will continue past the end of the technological cycle during
which the Arweave network itself will be active (see section 3.2.6):

1. Unlike trends in the CPU space, where computation clock speeds are
approaching the point at which theoretical physical limits are being
reached and Moore’s Law is decelerating[17], this is far from the case
with data density:
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Current maximum data density in consumer storage media:
1.66 ∗ 1012bits/cm3

Maximum data density achieved in research: 2.5 ∗ 1025bits/cm3

Theoretical maximum data density [11]: 1.53 ∗ 1067bits/cm3

From our current position, at an optimistic 30% annual data density
growth rate, it will take 434 years to reach the maximum theoretical
limit, at 20% – 697 years, at 10% AGR – 1,329 years.

2. Even if advances in data density slow, storage medium reliability
(Mean Time Between Failures) continues to increase and arguably has
an even brighter future[33, 39, 69]. The metric core to Arweave mining
profitability – that of GBh costs – responds equally to changes in data
density and data reliability.

3. Because of the rate at which humanity’s demand for data is growing[56],
the incentive to develop storage mechanisms with a cheaper GBh cost
in the future is enormous. Therefore, the likelihood that increased
data density/storage medium reliability will remain a possibility, but
not an actuality, is extremely low.

3.2.6 Data Permanence, Not Network Permanence

All technologies come in cycles[10]. While the Arweave’s mechanism design
is generally engineered to promote adaptivity to new circumstances, the core
Arweave team does not expect that the network as it is currently formulated
will continue to produce blocks in true perpetuity. This does not, however,
mean that we expect that the information stored inside the weave will be lost
after the final block is mined. It is our expectation that when eventually
a permanent information storage system more suited to the challenges of
the time emerges, the Arweave’s data will be ‘subsumed’ into this network.
After the mining of the final block, the financial incentive mechanisms for
data preservation will subside and give way to social incentives for data
preservation. This effect will likely be compounded by the exceptionally low
cost of storing the data from the network, due to its decreasing relative cost
over time.

This pattern of ‘nesting’ of archives when they are retired is common across
human history. An archive of Gopherspace (a ‘knowledge web’[4], prior to
the HTTP-based web[25]) can be found inside the Arweave’s permaweb. In-
side the Gopherspace archive, one can find archives of earlier Telnet and
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bulletin board-based discussion systems. Similarly, much of the Library of
Congress is now archived on the web[38], and indeed many of the books con-
tained within the library are themselves collections of old stories/poetry/-
technical writing. We anticipate that the post-network future of Arweave’s
data preservation will continue in a similar pattern, bolstered by the cryp-
tographic interweaving of all data in the network (true verification of a part
requires the presence of the whole), and the incentives in the network to
create many replications of its information – most of which will never be
deleted, even if the miners themselves are disconnected from the network.

3.3 Proof of Access: Dominant Strategy

A node’s Dominant Strategy [58] with respect to mining is the strategy that
maximises mining rewards. As we saw above, the mining reward per block is
largely outside of the control of the miner. A strategy to maximise rewards
must become a strategy to maximise a node’s ability to mine a block in
the first instance, and to do so before another node mines the block for the
current height. The probability that a node can take part in the mining
of a block is equivalent to the probability that a node is storing the new
block’s recall block — essentially the proportion of the blocks that the node
is storing. The probability that a node can mine a block first is a function
of the node’s hashing power relative to the average hashing power of all of
the nodes in the network that also possess the recall block.

P (win) = P (has recall block) ∗ P (finds hash first)

where

P (has recall block) =
Blockslocal
Bheight

P (finds hash first) =
HPlocal

HPnet

(12)

As mentioned above in section 3.2, increasing either or both of the proportion
of blocks stored locally and the hashing power of the node will result in
higher utility. Section 4, The Node: Behaviours for Protocol Compliance,
explores a node’s tactics within this strategy.
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Figure 2: Dominant strategy value assignment for miners in the Proof of
Access game, as data stored rises.

3.4 Implementation of the AIIA Wildfire Agent

Participants in the Arweave protocol play in a non-consensus-based adap-
tion meta-game, in which nodes score one another based on the utility they
provide, in an arbitrary fashion. The current reference Arweave implement-
ation implements a basic agent in this meta-game called wildfire. Wildfire
is a derivative of the Bittorrent protocol’s optimistic tit-for-tat bandwidth
sharing incentive mechanism. More details of the adaptive meta-game of
the Arweave network can be found in section 6.

Mining nodes will always have a finite amount of bandwidth available to
them. As such, miners must allocate their bandwidth resources appropri-
ately in order to maximise their opportunity to receive mining rewards. The
reference Arweave node implementation utilises its wildfire (WF) agent in
the AIIA meta-game (see section 6 for further explanation of AIIA) to re-
ward miners for engaging in pro-social actions, for example, being highly
responsive to requests for blocks or transactions from other peers. In WF,
mining nodes score and subsequently rank all peers by their responsiveness,
with the more responsive peers being prioritised for outbound messages in
return (for example, propagation of new blocks and transactions). Sending
messages by priority to peers that have been more helpful in the recent past
is a utility-maximising strategy for the node. It also has the side effect of
incentivising responsiveness on the part of nodes receiving requests: a node
needs to avoid being de-prioritised and possibly dropped from its peers’
contact lists. Finally, this improves the responsiveness of the network as a
whole, as less responsive nodes are encouraged to improve or are ultimately
excluded from participation in the network.
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3.4.1 Rationalising Outbound Bandwidth

Each node keeps a list of peer nodes. These peer nodes include the ‘trusted
peers’ that the node was given at a start-up, and remote nodes, from which
the node has received Arweave API requests. These are the peers to which
it sends transactions, blocks, and requests for information.

Each peer is given a score representing how quickly and accurately it re-
sponds to the other node’s API requests. The score is essentially a rolling
average of bytes per second over a number of recent requests to that peer.
New peers are given a grace period during which they are exempt from
ranking.

Periodically the peer list is pruned, and less well-performing peers are re-
moved probabilistically (i.e. the probability of removal is proportional to
their rank).

The leniency toward new peers and the probabilistic removal takes into
account short-term variability in peer responsiveness.

When propagating a transaction or a block, these peers are split into two
categories: the best-performing peers are sent the message first in parallel,
and then the rest of the peers (both the remaining worse-performing peers
and new peers) are sent the message sequentially.

Information requests also benefit from wildfire’s ordering and pruning of the
peer list.

This heuristic approach ensures that nodes can rationalise whatever band-
width they have, and ensure they are communicating with peers that are
accurate and prompt. This maximises propagation and response validity,
and minimises time and resource wastage (for example, avoiding sending
messages to retired or malicious nodes).

3.4.2 Promoting Responsiveness

A node receiving a request for information has to assume the request is from
a peer (either a known peer or a new peer) which is using wildfire (or an
alternative AIIA agent, see section 6) to monitor responsiveness. As high
connectivity is essential for mining and for fork avoidance, it is in the node’s
interest to respond promptly and accurately to all requests.

There is another reason that a node should not respond preferentially to

24



certain requests. This is because some requests will not be from miners, but
will be from edge or external users. As the network should be free at point
of use for such users (for example, users requesting transaction data), nodes
must not discriminate against them, or require reciprocation for responding
to requests.

A node does not have access to its WF score on peer nodes, though it does
have access to its rank. Consequently, we can describe a net utility function
as follows:

Utility = ∀P ∈ Peers Rank(P, Self) (13)

However, nodes experience the effects of a reduction in their rank, including:
reduced frequency of received propagations and information requests from
its peers, reduced frequency of requests from new peers, and ultimately in
reduced mining chances and increased forking, among others.

3.4.3 Network Ecology

A network of nodes running wildfire agents within the AIIA game will max-
imise throughput, in a similar fashion to Bittorrent swarms. This network
can be visualised as a directed graph with weighted arcs, the weights being
in units such as ‘bytes per second from last N responses’, see figure 3. Paths
through the network would show possible block or transaction propagation
rates. The lowest WF score on any path would be the maximum flow rate
along that path. As Arweave networks are in general highly connected, a
single slow edge would not necessarily form a bottleneck.

In this scenario, over time average connectivity strength between peers would
increase as lower ranked peers are gradually dropped from peer lists. The
negative effect is especially strong for nodes who are ranked poorly amongst
a large subset of their own peers. Lower-scoring nodes that want to con-
tinue mining effectively have strong incentives to upgrade their bandwidth
or otherwise improve responsiveness.

The essence of wildfire is that a node’s peers are ranked in terms of accuracy
and speed of response. The implementation and even the particular metrics
used by a specific node are invisible to that node’s peers. We cannot – and
we do not need to – assume that every node is using the same AIIA agent
(see section 6 for further explanation of this dynamic).
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Figure 3: Wildfire as a weighted graph

3.5 Fork Resistance and Recovery

In situations where multiple blocks are produced and distributed to the
network at the same moment, leading to multiple candidate blocks being
accepted by different nodes, network consensus begins to break down, and a
‘fork’ is formed. It is important to recover network consensus quickly – this
section discusses the mechanisms by which the Arweave protocol resolves
such issues.

3.5.1 Target Behaviour and Related Incentives

Forking presents a risk both to the individual node and to the network as
a whole. The target behaviours are included to avoid forking in the first
place, and to recover to the best fork as soon as possible.

One of the potential causes of forks emerging in the network is propagation
delay[20]. So nodes are incentivised to propagate blocks and transactions as
soon as possible after minimum validation is successfully completed. A node
will perform sufficient ‘edge’ validation on the data to protect the network
from attack, and will then propagate said data. Nodes are incentivised
to complete some validation at this stage, as propagating invalid data can
negatively impact a node’s peer ranking. Similarly, nodes are incentivised to
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mine blocks speedily to maximise their likelihood of receiving mining rewards
by propagating the first valid new candidate block – if they accept a new
block, it also preferable to them that all other peers accept that same block.
In addition to these incentives, the motivation to avoid the opportunity cost
associated with fork recovery encourages miners to avoid forks occurring in
the first instance.

However, forks happen, and when this occurs a node must be able to effi-
ciently assess whether it is on the majority fork and, if not, recover to the
majority fork immediately. Arweave fork selection is performed in a similar
fashion to traditional Nakamoto consensus-based blockchain protocols.

Each block includes a cumulative_difficulty field which represents the
amount of work that has gone into that specific fork of the blockweave up
until that block. A node can immediately compare its own current block with
an incoming block and assess whether the incoming block is (a) valid and
can be accepted and propagated; (b) invalid or old and should be ignored, or
(c) possible evidence of a preferable fork. The latter would occur when the
incoming block has a greater cumulative difficulty the node’s own current
block, and the fork’s previous block is not the node’s current block.

Because each individual miner has a selfish incentive to have their blocks
accepted (and subsequently receive a reward), miners are incentivised to
adopt the chain with highest cumulative difficulty as new blocks added to
this fork have the highest likelihood of eventual adoption by all of the other
nodes of the network.

When a potentially preferable forked block is found, the node requests each
block from the divergence between its own blockweave, and the potential
forked blockweave, verifying each in turn (see figure 4).

In the figure, a node following the lower line is at height 39 & its current
block has cumulative difficulty 421. It receives a block with height 41 and
cumulative difficulty 529. The block is otherwise valid so our node must
take this block as the tip of a preferable fork. It traces back from the
new height 41 block (taking the previous_block in turn from each block)
until it reaches a block in its own history (i.e., in the node’s own Block
Hash List). In the figure the join is found at height 38 (steps 1, 2 & 3).
This new line becomes the node’s preferred fork, and adopts the block with
cumulative difficulty 529 as its current block (step 4).

The height 39, cumulative difficulty 421 block is now invalidated, and trans-
actions from that block – if they are not found in the three most recent blocks
of the new fork – are dropped.
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Figure 4: Fork with cumulative difficulties

4 The Node: Behaviours for Protocol Compliance

This section describes how an Arweave node complies with the Arweave
protocol detailed in the previous section. The node’s dominant strategy
is to optimise mining rewards, which it does by mining and propagating
new blocks. The node also receives incoming messages and reacts according
to the protocol’s incentive structures. Foremost among these messages are
new blocks, new transactions to be mined into blocks, and requests for
transactions to be served.

Other activities and other incentives impact the ability of a node to mine
blocks and have those blocks accepted by the network. These act as pre-
requisites or constraints on a node’s mining capability.

In order to mine a block, the node’s operator must consider the following
requirements (see fig. 5):

1. Receiving blocks and transactions. A node’s social rank in the
Adaptive Interacting Incentive Agents (AIIA) meta-game will directly
impact the node’s latency for receiving new blocks and transactions,
and whether they are received at all. A node with low social rank will
tend to receive information later than other nodes, and may not receive
all information. Ultimately, nodes with low social rank risk being
completely ostracised from the network. If a node is not receiving block
and transaction information, it cannot effectively mine. Consequently,
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Figure 5: Prerequisites for mining

reasonable peer scores are a fundamental prerequisite to mining in the
Arweave network.

2. Accessing the recall block. In order to mine a new block, a node
must already be in possession of the recall block associated with that
new block. As Bn.recall cannot be predicted before the mining of Bn−1
(see formula 14), the probability that a node possesses the recall block
is in proportion to the quantity of the blockweave which that node is
storing. This is limited by the node’s storage capacity.

3. Generating a candidate block. Once the first and second stages
have been completed, the nodes must then ’race’ each other using their
computational power in order to generate a candidate block. The more
computational power a node provides to the network, the more likely
they are to be the first to generate said candidate block.

4. Gain acceptance of the candidate block. This final stage returns
to the social nature of the network: nodes with low AIIA social rank
risk their messages (including new candidate blocks) being propagated
too slowly to be accepted by the network. Once generated, a new
candidate block must be accepted by the network in order for the
node that generated it to receive a reward. As well as AIIA scores, the
selection of transactions included in the candidate block can impact
how likely the rest of the network is to accept it. For example, a block
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containing transactions that are on content policy blacklists widely
held by the rest of the nodes in the network is unlikely to be accepted
(see section 5 for details of this process).

With this context in mind, we look in the next sections first at mining, then
at communications, and finally at fork avoidance and recovery.

4.1 Mine and Propagate New Blocks

Mining and propagating new blocks are continuous activities. As described
in section 3.2.1, the total reward a node receives for mining a new block
consists of a margin reward, inflation reward, and potentially, a small pro-
portion of the storage endowment. Due to the instant reward from mining
new transactions into the candidate block, there is a significant immedi-
ate incentive for a miner to include pending transactions in the candidate
block (in addition to the longer-term incentive to increase the overall stor-
age endowment). There is also sufficient incentive to mine a block without
transactions when necessary, as successful miners will still take an inflation
reward and, in some cases, also a small quantity from the storage endow-
ment.

4.1.1 Block Construction Procedure

A mining node has two pools of transactions: a waiting pool and a mining
pool. As new transactions arrive, they are validated by the node and scanned
using the node’s content policies (see section 5 for details of this process).
Once the node reaches a high level of confidence that other nodes have likely
received the transaction (see section 4.2) the transaction is moved from the
waiting pool to the mining pool. Once a block is mined by a node and
accepted by the network, the transactions inside the block are removed from
the mining pool. At the protocol layer, fork recovery (see section 4.4 below)
can result in transactions being re-introduced from a deprecated block into
the mining pool.

The new Block Data Segment (BDS) is a hash of:

1. The independent hash of the previous block.

2. The entire contents of the recall block.

3. The transactions and other metadata for the candidate block.
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The BDS serves as the ‘puzzle’ in the Arweave protocol’s Proof of Work
mechanism.

The diagram below (figure 6) shows how information from the previous
block, the recall block, and transactions are incorporated into the BDS and
into the new candidate block. The new block contains everything necessary
to rebuild the BDS and validate the proof of work – except for the recall
block, which the node must already possess.

Figure 6: Block construction from previous block, recall block, and transac-
tions

There are fives stages involved in generating a new candidate block:

1. Assemble relevant metadata.

2. Gather the set of transactions to be mined into the new block, and val-
idate the set together. This involves calculating the current difficulty
and validating the transaction fees against that difficulty.

3. Generate the new Block Data Segment (BDS).

4. Find a nonce that satisfies the difficulty given the BDS[47].

5. Package and propagate the new block in its memoised form - it’s
’shadow’.

Step One: Assemble Relevant Metadata

Each node should have in its state (or, equivalently, in the current block) a
current Block Hash List (BHL) and the current block height (see appendix
section 10.2.1 for the detailed anatomy of a block). The independent hash

31



of the current block modulo the current block’s height determines the height
of the recall block (see formula 14).

BHrecall = BHL[Bindep hash mod Bheight] (14)

This height will be within the range [0, Height). Note that this precludes
the current block acting as the recall block. Consequently, the recall block
is always a previous block from the blockweave’s history, and two different
blocks are always required to mine a new block.

The identity (i.e., the height and independent block hash) of the next recall
block can be known if and only if the previous block has been mined. Sub-
sequently, miners cannot predict ahead of time which recall block will be
required to mine the next block. This means that the most efficient strategy
for any miner to take is to store as many of the old blocks of the network
as possible (within the bounds of the equilibrium of Proof of Access as ex-
pressed in section 3.3). The probability that a miner is able to hash on any
given round of Proof of Access is equal to the proportion of the number of
previous blocks in the blockweave it has access to.

Proof that the node has access to this recall block (’Proof of Access’) is in-
cluded in the process for generating a new Block Data Segment, as described
in further detail below.

Step Two: Fetch and Maintain the Transaction Set

Transactions are arriving and being verified constantly, the node must decide
which transactions to include when generating a new candidate block. Each
transaction is validated individually when it first arrives at a node, and
then it is transferred into the waiting pool. After the appropriate wait time
(see Section 3 for details), a subset of these transactions (possibly all of
them) is selected for mining and transferred to the mining pool, where the
transactions are validated as a set. It must be possible to apply all the
transactions in the set individually to the current network state and Wallet
List.

Step Three: Generate the Block Data Segment

The recall block, including its transactions and the data they contain, is
included in the material from which the new Block Data Segment (BDS)
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is generated (see section 10.2.1 for the detailed anatomy of a block). Con-
sequently, for a new block to be validated and accepted, the correct recall
block must have been used to generate the BDS. This therefore constitutes
proof that the miner had access to the appropriate recall block at the time
of proof of work challenge generation.

Step Four: Find a Valid Nonce

Next, the miner must attempt to generate a nonce that leads to the creation
of a valid hash, satisfying the difficulty for the next block. The mining
algorithm used in the Arweave protocol is RandomX[64]

In the reference implementation, the default number of miners is the total
of all CPU cores on their host machines minus one. The found nonce is the
proof of work included in the new block data structure.

If new transactions are received by the node during step four that should be
included in the new block, the process is interrupted. In this case, step two
is repeated with the new transaction set, and a new BDS is generated.

Step Five: Propagate the Candidate Block

In step five, the block is packaged and propagated to peers, prioritised in
order of their peer rankings (see section 6 for further explanation of the
AIIA game). Mining nodes only receive a mining reward if their candidate
block is accepted by the network before any other node’s candidate block is.
This means that the node’s block propagation speed is a vital determining
factor of their mining efficacy.

4.1.2 Incentives

Miners are rewarded by the network for mining new blocks. While the ma-
jority of transaction fees fill the storage endowment, the miner instantly
receives a transaction reward, inflation rewards and, in some cases, a pro-
portion of the existing storage endowment (see ection 3.2.3 for details of
transaction and reward pricing). The reward is not paid to the miner in a
transaction (which would have to be validated by the network, unnecessarily
bloating the blockweave), but the storage endowment is decremented and
the Wallet List updated directly. The updated endowment and Wallet List
are integrated with the new BDS and with the new block’s data structure,
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defining the new token ownership state of the network.

A corollary of this is that acceptance of the new block by the network ef-
fectively includes acceptance of the reward. The reward payment to the
miner is part of the state of a particular fork. If during fork recovery certain
blocks are rejected, then the mining rewards payments for those blocks are
also invalidated.

4.2 Receive, Validate, and Propagate Transactions and Blocks

4.2.1 Transactions

When the node receives a new transaction (sent from another Arweave node,
or from an edge client or app), the node validates the transaction fee and that
the previous transaction reference matches that which is found in the Wallet
List. If the transaction is successfully validated, the node then propagates
the transaction to its peers as quickly as possible. Incentive mechanisms
associated with the AIIA meta-game and fork avoidance promote this be-
haviour (see section 6).

It is in a node’s interest to propagate the transaction directly upon receipt
instead of just mining it into a block. This is because the individual trans-
action needs to be accepted as valid by a majority of other nodes in the
network before a block containing that transaction can be accepted.

The steps for validating a transaction before entry into the transaction pools
are as follows:

1. Transactions that are not well-formed (see appendix section 10.2.4 for
the full anatomy of a transaction) are ignored by the recipient node;

2. Transactions that have already been processed are dropped;

3. The wallet associated with the transaction must contain a sufficient
token balance in order to process said transaction and any additional
pending transactions from the same wallet;

4. TXowner and TXtarget should not refer to the same wallet;

5. The transaction cost must be above a dynamic minimum (see section
3.2.3 for further details of transaction cost and pricing);

6. The TXanchor must be present in the current wallet list as TXowner’s
last processed transaction ID, the independent hash of one of the last
50 blocks, or be empty for the first transaction;
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4.2.2 Blocks

During operation, a node will receive blocks from other peers in the data
distribution network, either other miners or special-purpose peers (for ex-
ample, Weaver browser nodes[27]). The receiving node needs to validate
and accept the block as quickly as possible in order to keep up with net-
work consensus and continue mining effectively. Prompt block propagation
is part of fork avoidance – a node must make sure the blocks it accepts are
also accepted by its peers.

Critically, in order to make preliminary block verification inexpensive prior
to gossiping the block to other peers (risking increasing block consensus time
and subsequently forks – see section 2.3 for more details of blockshadows),
the proof of work found in blockshadows is verifiable independently from
other block checks. This avoids the necessity for constructing blockshad-
ows into full block structures and verifying the BDS which could otherwise
become a denial of service attack vector.

Before gossiping a received block to its peers, the following steps of prelim-
inary block verification must occur:

1. Ensure that the blockshadow structure is well-formed (see appendix
section 10.2.3);

2. Confirm whether the block has already been processed (by checking
its BDS);

3. Ensure that full copies of every transaction referenced in the block are
held in the local transaction pools;

4. Validate that the incoming block’s BDS and nonce combination satisfy
the present difficulty in the network;

5. Validate that the incoming block’s timestamp is within acceptable
bounds of the previous block (timestamps monotonically increase)

If the preliminary validation passes, a full block is generated from the re-
ceived blockshadow, and the blockshadow is gossiped before the core veri-
fication steps.

Next, the core block verification steps must be performed before the block
is accepted by the local node:

• Generate a BDS from the block and verify it against the BDS previ-
ously provided in the blockshadow;
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• Verify that the blockweave metadata included in the new block (e.g.,
Wallet List, Block Hash List, weave size, etc.) are valid updates to
the metadata provided in the previous block, given the new block’s
transactions and timestamp.

4.3 Receive and Respond to Requests

Mining nodes request information from peers at various stages in the mining
process, including upon first joining the network and sychronising with their
peers, and when access to a recall block is required to verify a new block. In
order to efficiently allocate its scarce outbound bandwidth, a node ranks
its peers by their social behaviour (for example, their responsiveness to
requests). Nodes are incentivised through the AIIA meta-game to respond
promptly and accurately to requests for information, in order to gain rank
with their peers in the network. See section 6 for full details of the AIIA
meta-game’s incentive design.

As well as mining nodes, other users of the network send requests for inform-
ation – especially but not exclusively requests for transaction data. These
requests, which will not necessarily impact a node’s AIIA scores, are not dis-
tinguishable from mining peer requests without special effort. See section
7.1.3 for details of how the Arweave HTTP API facilitates these alternate
information requests.

4.4 Fork Avoidance and Fork Recovery

As propagation delay is a main cause of blockchain forking, prompt propaga-
tion is an important fork avoidance tactic. In the Arweave protocol, prompt
propagation is incentivised by agents in the AIIA meta-game, for example
via the wildfire mechanism (see section 6).

When a node receives a new candidate block that is two or more blocks
ahead of its known previous block, this implies that there is a fork in the
network. The node must therefore take prompt action to confirm which of
these apparent forks is the most accepted by its peers, by evaluating the
cumulative difficulty of the forks. The ‘cumulative difficulty’, represented in
every block data structure, is a proxy representation of the amount of Proof
of Access work that is encapsulated in this fork of the blockweave. In a fork,
paths resulting in higher cumulative difficulty are preferred.

On receiving a new block with greater cumulative difficulty, a node will take
the new block as the preferred fork and trace back through the fork’s Block
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Hash List to a shared point in its own history. Once a common point is
found, the transactions and blocks required to verify the fork are evaluated.
If the fork is found to contain valid blocks from the point of divergence to
the tip, and it is still of higher cumulative difficulty when fork validation
ends, the node’s context switches to the greater fork.

5 Decentralised Content Policies

Given that the miners collectively maintain the Arweave network, a mech-
anism is required to allow them to express their opinions on what content
should and should not be hosted in the system. This is achieved through
three related but distinct mechanisms:

• A democratic process of voting on content entry into the blockweave.

• The individual ability of each node to choose what content to store on
their machines.

• The ability of gateway nodes to filter blockweave data that users are
exposed to.

Nodes express preferences about content through content policies. Content
policies can be arbitrary computation performed upon transactions that
classify them as acceptable or not acceptable to the local node. In the ref-
erence Arweave implementation, content policies are supported in the form
of substring matches as well as hashes of the data stored in the transaction.
Other protocol implementations can utilise their own content policy mech-
anisms, for example computer vision technologies and fuzzy hash matching
(such as in PhotoDNA[46]).

5.1 Voting Phase

When transactions are distributed to the network, they are scanned against
the content policies of each node. If a transaction contains content prohib-
ited by the content policy, it is not accepted into the node’s transaction pool
and is not gossiped to other peers.

If a new block received from a peer contains references to transactions that
have been dropped by the local node, the block is not verified and is dis-
carded by that node. If other nodes in the network have not dropped the
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offending transaction, a fork emerges. During the forking process, those
nodes whose content policies have rejected the transaction ‘race’ against
those who have accepted the transaction to produce the next block. Once
such a block is produced, nodes on the other fork initiate a fork recovery pro-
cess to download the block with its transactions, verify them, then drop the
offending transactions from temporary memory. In this way, the network is
able to maintain consensus while allowing nodes to take part in a stochastic
voting process, expressing whether or not they wish specific content to be
added to the blockweave. Therefore, nodes that wish to reject said content
are not required to store that content on their non-volatile storage media.

5.2 Storage Phase

After nodes have voted to accept the data into the network, an incentive to
store that data is embedded in the Proof of Access mechanism of the block-
weave. When new participants join the network, they scan and download
transactions that adhere to their content policies, avoiding those transac-
tions which they would prefer not to store.

As the node operator changes content policies, they can re-scan their local
storage and remove content that now breaches their policies.

5.3 Incentives

The decentralised content policy mechanism generates two complementary
incentives:

• An incentive not to over-zealously reject too many transactions, as
this would lead to a decline in mining rewards, or;

• An incentive not to accept transactions that the majority of the net-
work is likely to reject, as this will result in mining candidate blocks
that the rest of the network will ignore.

This set of incentives forces miners to strike a balance between over-leniency
that could be harmful to the network in the long term, and over-rejection
that could lead to reduced utility of the network.
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5.4 Trade-Offs

One of the consequences of the decentralised content policy mechanism is
that settlement times of transactions are increased by one block period.
Therefore, when a transaction is mined into a block, this is not neces-
sarily an indication that the transaction will be accepted by the network
at large. However, given the networks use of Nakamoto-style eventually-
consistent consensus[47], this extra block confirmation period does not ma-
terially change the user experience of the system.

Nodes can also choose to drop the head block of the network and re-mine
the last block in order to determine a new recall block, if content policies
have caused the existing recall block to have too few replications. The
timeout for block re-mining is not enforced at a protocol level. However, as
more hashing power is applied to the prior block, the likelihood of the head
block being re-mined increases. Nodes are disincentivised from re-mining
the head block too early, however, as this would require them to expend
unnecessary hashing power without a high likelihood of their candidate block
being accepted by other nodes.

5.5 Gateways

Just as the decentralised content policy mechanism affects how content is
added to and stored within the network, gateways also apply this mechanism
to indexing data that is already stored within the network. Gateways index
only the content that adheres to their own content policies. Subsequently,
when a user views, for example, a decentralised social media application on
the Arweave, their chosen gateway determines which content they will be
shown, according to that gateway’s content policies.

Fundamentally, users are therefore able to choose what types of network con-
tent they are exposed to by deciding between using gateways with different
content policies.

Additionally, these mechanisms solve application developers’ concerns about
removing or censoring content from their own platforms. Although users
can choose what they see, they cannot forcibly deny others from seeing the
content on the blockweave, as everyone has an equal choice of which gateway
(and therefore content policies) they wish to view the blockweave through.

We expect that communities of like-minded individuals will coalesce around
gateways according to their content policies, maintaining and advancing the
way that they wish to see the web, together. When the permaweb reaches
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an appropriate level of adoption, we anticipate these decentralised gateways
will represent a diaspora of varied views, leaving each individual a wide
range of choice regarding how they see the web.

6 Adaptive Mechanism Design in Arweave

6.1 Introduction

One of the strengths of the centralised web that led to its long-term suc-
cess was the simplicity of its protocols and their adaptability[65]. For ex-
ample, the hypertext transfer protocol (HTTP) as described in the original
specification[25] was purely intended for the transfer of a ‘web of know-
ledge’. In practice however, HTTP has come to drive almost all movement
of name-addressed content on the internet. This is a consequence of the
flexible nature of the protocol. Given Arweave’s goal to create long-term,
reliable data storage mechanisms built on economic incentives, flexibility
and adaptability are both built into its mechanism designs.

The flexible components of the Arweave’s economic mechanisms are built
around the Adaptive Interacting Incentive Agents (AIIA) game. The AIIA
game is an adaptive mechanism design[8] for ranking, exhibiting, and re-
warding pro-social behaviour in a network environment that changes over
time. Each player in the AIIA game defines a strategy for ranking and prior-
itising each other player that it interacts with in the network. Strategies are
enacted by agents, which interact and rank the utility they perceive other
agents to have provided, and apportion their player’s scarce resources re-
spectively to reward this. This pattern of rewarding pro-social behaviour re-
ciprocally can be viewed as a generalisation of BitTorrent’s optimistic tit-for-
tat algorithm – from bandwidth sharing to generally useful behaviours[18].

As agents interact and rank one another for non-token social rewards (for ex-
ample, data distribution, or ArQL query prioritisation), their own responses
to these behaviours are also ranked socially by others. That is, the way that
players rank each other, as well as their actions themselves, are ranked by
other players. In effect, this creates a second-order ‘meta-game’ on top of
the typical tit-for-tat behaviour. As the agents – each employing their own
specific strategy – interact, they have an incentive to incentivise each others’
behaviour towards pro-social goals.
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6.2 Comparison with Consensus-Based Games

Unlike typical blockchain mechanism designs[47, 67], the exact behaviour of
the AIIA game’s players is not enforced through network-wide consensus.
This allows each player within the network to essentially be playing a dif-
ferent ‘game’ (their ranking mechanism for other players and their agents)
within the meta-game. Subsequently, the totality of the rules expressed in
the meta-game is defined by the sum of each of the individual games that
are currently being played. This stands in contrast to the consensus-layer
games of the Arweave network (and other blockchain protocols). In typ-
ical blockchain game mechanics (for example, Bitcoin’s Proof of Work) all
participants are required to play by exactly the same rules. Over time the
agent behaviours in the AIIA game will shift in response to changes in the
technical and social environment the network finds itself within, as the be-
haviours that each player (i.e. network participant) chooses to incentivise
morph.

The AIIA game is similar to the incentive characteristics displayed by the
BitTorrent network[18], which does not programmatically enforce every net-
work participant ranking every other participant in the network in the same
way. Instead, it allows each actor to maintain private, local scores for other
peers. In 2007 this gave rise to a modified BitTorrent client, BitTyrant,
that was specifically designed to exploit weaknesses in the original rank-
ing mechanisms in use by most participants BitTorrent network[54, 55].
Improvements to the standard optimistic tit-for-tat agent were then made
in response to BitTyrant[26], optionally used by ecosystem participants to
avoid the issues caused by BitTyrant nodes. In this way, BitTorrent’s data
distribution mechanism has been an AIIA-like meta-game mechanism design
for over 12 years. This has allowed the BitTorrent network to adapt to new
challenges (such as the emergence of BitTyrant), without the need for cent-
rally enforced protocol upgrades. The Arweave’s AIIA meta-game is the
deliberate adoption of this strategy to incentivise general pro-social beha-
viour as the environment that the network finds itself in, changes (for ex-
ample, network usage patterns, internet architecture, exploits, and emerging
incentive mechanism issues).

6.3 Implementation Outline and Emergent Properties

At its core, the AIIA game encourages network participants to build agents
that:

1. Apportion their own resources so that they receive the highest net
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utility from the other agents in the game; and

2. As a trade-off to (1), offer small incentives for node operators to exhibit
a bias towards nodes they believe are acting in a pro-social manner,
given the present situation.

As long as node operators exhibit some level of bias towards other nodes
operating in a pro-social manner (even if they themselves are not operating
pro-socially), over many iterations of the game, generally agreed-upon beha-
viours for incentivisation express themselves (see simulation details below).

For example, all miners have a stake in the Arweave token price. As price is
partially a function of demand, features that lead to higher demand for the
token are positive for all miners in the network. One such feature likely to
increase demand is the Arweave+IPFS bridge. The Arweave+IPFS bridge
requires a small portion of Arweave nodes to run a parallel IPFS node, ex-
posing Arweave data to IPFS clients. However, each individual miner in the
current Arweave+IPFS integration is not directly incentivised for operat-
ing an Arweave+IPFS bridge, despite the fact that this is clearly pro-social
behaviour. Players in the AIIA game, even if they do not themselves run Ar-
weave+IPFS bridges, are able to exert a small ‘nudge’ on each others’ beha-
viour by marginally rewarding other nodes running Arweave+IPFS bridges
higher than those not running a bridge. Expressing this incentive costs the
AIIA node operator a very small quantity of lost utility by marginally de-
prioritising nodes that are not running bridges. However, operators have an
incentive to do this (to some small extent) as the pro-social behaviour will
benefit them in the long run by means of demand for tokens.

Formally, nodes are incentivised to incentivise a pro-social behaviour in other
nodes if and only if:

∞∑
i=0

Utilityincentivised(i) >
∞∑
i=0

(Utilitybefore(i)− Costincentivise) (15)

Each node has only fuzzy indications of how well they are performing in
other peoples AIIA rankings, as over time the perceived rewards for greater
AIIA ranking will themselves shift along with the games at play in the net-
work. Rational agent designers subsequently do not keep track of the score
they perceive other agents are giving them, but instead they measure the
subjective utility they have received from the other agents. By experiment-
ing with expressing different behaviours (for example, running IPFS bridge
nodes, not running them, prioritising a small group for data distribution, or
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distributing data to everyone who requests it, et cetera), nodes can optimise
their behaviour for the current state of the AIIA meta-game without ever
fully perceiving all of the rules at play within it. Further, in practice it
is expected that agent designers in the AIIA meta-game will communicate
with each other ‘off-chain’ to discuss strategies and behaviours to incentiv-
ise, swap agent code, etc. In this way, it is anticipated that an ecosystem of
interacting agents will emerge over time with modifications and perceived
improvements being added by many parties in a permissionless manner.

6.4 Simulation

In order to demonstrate the properties of the AIIA meta-game over time, a
simulation was constructed. In the simulation, internal agent characteristics
for each player in the network are represented by a vector of floating point
values between zero and one, and biases for preferred behaviour in a similar
vector of characteristics of equal length:

ACs = {0, ..., n} (16)

ABs = {0, ..., n} (17)

The biases expressed by each agent represent the perceived pro-social beha-
viour of the agent designer, while the characteristics represent the behaviour
that the agent actually exhibits. During each game step, each node calcu-
lates its net fitness score relative to other nodes:

Fnet(A,As) =

|As|∑
i=0

F (A,As[i]) (18)

Each node also performs a random mutation and calculates its new utility
score, then proceeds to the next game step with the preferable strategy:
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Anext =

{
M when Fnet(M,As) > Fnet(A,As)

A otherwise

where

M = Mutate(A)

(19)

Nodes rank each other on the distance between their own behaviour mixed
with their biases, against the behaviour of other nodes.

F (A,B) =

|ACs|∑
i=0

diff(ACs[i],mix(BCs[i], BBs[i])) (20)

This behaviour mimics how AIIA game participants typically favour those
who are valuing and assigning resources in a similar fashion to themselves,
following an abstraction of the pattern expressed in BitTorrent’s optimistic
tit-for-tat data distribution mechanism.

When executed, the simulation shows that when initialised with both ran-
dom and shared ACs vectors, over a long enough time period the ACs of AIIA
game participants tends towards the common biases in the agent set. Fur-
ther, the simulation demonstrates that convergence to pro-social strategies is
always achieved assuming that the rate of change in the perceived pro-social
behaviour does not exceed the average rate of expression of each bias.

6.5 Limitations

While AIIA game-like incentive mechanisms can be used to build mechanism
designs that adapt to changes in the environment, they are subject to three
fundamental limitations:

1. Primarily, the adaptive mechanism design that emerges from AIIA-
like games can only encourage the expression of behaviour that the
majority of the network participants favour. The mechanisms them-
selves cannot calculate pro-social behaviour patterns without the sum
guidance of the agent designers. This suffers from the same class of
attacks that are expressed by blockchain networks in which a majority
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of the nodes (and their associated power in Sybil-resistance games) act
unfaithfully[59].

2. The second major limitation of AIIA-like games is that they cannot
be used to shift network-wide consensus mechanisms. Only off-chain
reputation scores can be subject to the individual adaptations of games
by network participants.

3. Finally, as mentioned above in the simulation section, the rate of ex-
pression of biases in the network, often at the short-term disadvantage
of the expressing node, is a limiting factor for the speed at which the
network can adapt to a changing environment. That is, if nodes are
too selfish in their non-expression of pro-social biases, they may not
be able to keep up with changes in the environment sufficiently.

To date, the Arweave network has been exposed to two AIIA agents: wild-
fire (described earlier in this paper section 3.4) – an agent that achieves op-
timistic tit-for-tat-like bandwidth sharing; and Weaver[27] – an agent that
randomly forwards messages to just the first ten nodes that it encounters on
the network. In practice, Weaver nodes are currently the minority and are
de-prioritised relative to other nodes by the majority wildfire nodes in the
network. We expect that as the environment of the Arweave network evolves,
modifications will be made to Weaver and wildfire (and other new agents
invented) which reward behaviours like servicing ArQL requests, minimising
latency for data requests, and aiding rapid location of data.

7 Arweave Protocol Interoperability and the Per-
maweb

In this section we describe the permaweb, a cluster of communication pro-
tocols, built on top of Arweave’s permanent knowledge ledger, that together
expose a permanent, decentralised web. The permaweb is superficially, visu-
ally similar to the traditional web. However, users’ experience of the pages
and applications that live on the permaweb differ in a number of funda-
mental ways from the experience of such tools on the traditional web.

This section explores some of the differences between the permaweb and the
traditional web, and how the protocols involved work together to provide
various advantage.
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7.1 Characteristics

This section will describe the key characteristics of Arweave’s permaweb,
and surrounding family of protocols.

7.1.1 A Trustless and Provable Web

All content stored on the Arweave is timestamped and tamper-proof. This
is guaranteed by the basic blockchain infrastructure upon which the block-
weave has iterated. As described in the classic blockchain papers[29, 9],
block timestamps do not rely on time servers, but on network consensus.
Timestamps are reliable due to the immutable nature of the blockweave
data structure, and are accurate to within a few minutes. The inclusion
of transaction data inside block hashes and recall blocks ensures that data
remains unadulterated during storage or retrieval, while also validating that
said transaction data remains available within the network at any time.

Each wallet record in the Wallet List includes that wallet’s last transaction.
This ensures that full history of every wallet is always readily available.
Further, as every piece of information on the Arweave is signed by a wallet,
data uploaded to the permaweb is always associated with some form of
(at least pseudonymous) identity. In practice, unlike with other content-
addressed networks[12], every web page in the Arweave is associated with
a specific identity, at a specific point in time. This means that records of
facts can be traced through the network to the identity that first asserted
those facts. This is a major shift from the paradigm of the centralised web, in
which facts can be asserted, spread, and then revoked in order to disseminate
misinformation whose source is hard to determine[63, 23, 40, 60].

7.1.2 Web Responsiveness Through Incentivisation

Incentivising data replication is an essential component of the Arweave pro-
tocol’s mechanism design. This incentivisation ensures that the network as
a whole is resilient to damage or attack, and that data is reliably stored
in the network. These incentives also vastly improve the responsiveness of
the network and the speed of data location and retrieval. Primarily, this
is because there is a substantially higher probability that any given node
possesses the data it receives a request about. Nodes, therefore, typically do
not have to forward data requests to other nodes, but can fulfil said requests
themselves, unlike in ’contract-based’ storage systems.
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The Arweave protocol’s mechanism design is detailed in full in section 3.

7.1.3 Open HTTP API

In order to conduct the business of running the network, Arweave nodes
communicate with each other using the Arweave inter-node protocol (the
reference implementation of which is a HTTP API. Because the nodes in
the Arweave network share data with one another in the same format as
browsers themselves use, the accessibility of data inside the network for
browsers on desktops, mobiles, and other devices comes naturally to the
protocol itself. Further, third-party applications and browsers are ’first class
citizens’ inside this network, as they can all communicate using the same
basic, well-established technologies.

7.2 Application Architectures

7.2.1 Client-Server

Traditional web or native applications have a client-server architecture. This
model is still possible with the Arweave, as a web server can act as a front-
end for data stored on the network’s permanent ledger. Such an ‘Arweave-
enabled’ server will interact with one or more Arweave nodes using the
Arweave HTTP API, reading and writing data on behalf of clients. These
services can be websites with clients as visitors, or they can be native ap-
plications passing client requests to a server operated by the developers. In
this centralised Arweave-app model, these services can maintain a pool of
AR tokens in order to pay for data storage requests on behalf of the cli-
ent. Reading data from the blockweave, however, is still free at the point of
access using this application structure.

Monetisation potential for this architecture is similar to the models of the
centralised web. A developer will need to accrue more value through advert-
ising, monthly subscriptions or direct payments within their application,
than the amount of AR tokens they are utilising to power their storage.
There are many use cases for permanent immutable storage.

7.2.2 Serverless Web Application Architecture

Decentralised applications reside directly on and operate directly from the
blockweave itself, and can be accessed by a typical web browser. This is pos-
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sible because the entire application itself is stored on the Arweave network
as transaction data, which is executed as code when served to a browser,
or other client application. Given the blockweave’s immutable link between
uploaded data and the (potentially pseudonymous) identity of the uploader,
the provenance of any Arweave application can be consistently proven.

Applications implemented in the most popular web technologies, including
HTML, JavaScript, and CSS, are commonly chosen as the basis for decent-
ralised Arweave apps. However, if the client application used to access the
transaction data includes an integrated interpreter/parser for additional lan-
guages, applications implemented in these technologies could also be down-
loaded from the blockweave and executed within the client, for example as
a desktop application.

Applications hosted on the Arweave network are also able to write persist-
ent and provable state to the blockweave. Since Arweave does not impose
a particular data structure, developers are free to store their data in the
format that makes the most sense for them (both the transaction data itself
and the transaction tag field can hold an arbitrary key-value list). If the ap-
plication is best served by a highly optimised Merkle structure, such as the
one found in the Ethereum Virtual Machine, it can be easily implemented
on the Arweave network.

Serverless applications hosted on the Arweave network allow users to pay
directly for their interactions with the network. This frees the developer
from having to subsidise the cost of user interactions themselves.

7.3 Gateway Nodes

An Arweave gateway node is similar to any other node, with additional
features integrated for accessing or querying the network, including:

• ArQL - a query language and index for querying blockweave metadata,
focusing on transactions, their tags, and transaction-linked timestamps
(see section below for further details).

• Arweave DNS and TLS - a way to access applications stored on the
blockweave using relevant wallet and transaction IDs as domain names
(see section below for further details). This feature is compatible with
existing DNS and TLS systems.
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7.3.1 ArQL

One of the optional protocols in the Arweave family is that of ArQL: a
simple querying language built for primitive searches of the data stored
in the Arweave network. ArQL is intended as a lightweight mechanism to
help application developers to build simple permaweb apps in the absence of
more advanced decentralised databases. ArQL does this by indexing the tags
associated with transactions as defined by users and/or developers. While
ArQL indexes are typically kept consistent with the locally-held blocks and
transactions, they are notably not necessarily globally consistent with the
network, as not all nodes must hold a full replication of all network data.
This gives rise to three unusual properties for a decentralised database:

1. Query results returned by nodes running ArQL are subject to the same
content policies that are expressed by that node. For more details on
the content policies mechanism, see section 5.

2. As queries are only executed inside a single node, they can be relied
upon to provide results in a timely manner. This is possible as there
is no query sharding, or delays in collating results from other nodes,
etc.

3. Certainty that a query has returned all possible results is not obtain-
able – the results of a query merely indicate the transactions in the
network that the servicing node is aware of, or is willing to reveal
details of.

As a consequence of 3, the use of ArQL may be limited in some circum-
stances. However, the consequences of 1 hold profound effects for application
developers and users.

7.3.2 Arweave DNS and TLS

Arweave gateway nodes can utilise the standard DNS infrastructure to im-
prove the display and functioning of Arweave transactions as web applica-
tions. For example, the owner of a domain can run a permanently-available,
decentralised web application just by storing a transaction on the Arweave
network and registering DNS records via the usual external service providers.

1. DNS
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Two DNS records are required to link a domain to an Arweave transac-
tion on a gateway node. For example, www.mycustomsite.com would
need the following records to link it to www.arweave-gateway.net:

A DNS CNAME record pointing to an Arweave gateway:

www CNAME arweave-gateway.net

A DNS TXT record linking the domain with a specific transaction ID:

arweavetx TXT kTv4OkVtmc0NAsqIcnHfudKjykJeQ83qXXrxf8hrh0S

When a browser requests www.mycustomsite.com the user’s machine
will (through the usual DNS processes) resolve this to the IP ad-
dress for the gateway node arweave-gateway.net. When the gate-
way receives a HTTP request with a non-default hostname, e.g. www.
mycustomsite.com instead of www.arweave-gateway.net, the gate-
way will query the DNS records for www.mycustomsite.com and the
‘arweavetx‘ TXT record will tell the node which transaction to serve.

2. TLS

A significant share of browsers disallow the use of native cryptographic
functions for web pages accessed without TLS. This means Arweave
applications cannot use hashing functions, signing, or verification fea-
tures without integrating support for TLS. Not supporting TLS there-
fore potentially limits the usefulness of Arweave permaweb apps, while
also leaving these applications vulnerable to man-in-the-middle (MITM)
attacks. Given that transactions are signed, a direct MITM attack is
difficult, but the lack of encryption also opens a class of novel at-
tack vectors. One example includes the possibility of intercepting and
manipulating the ‘/price‘ endpoint, which could be exploited to re-
turn unacceptably low prices- possibly causing a user’s transactions
to fail, or high prices- which might result in the user’s wallet being
overcharged for a transaction.

Gateway operators generate and maintain TLS certificates for the
gateway client. For example using ACME [7] for Let’s Encrypt, though
other TLS systems can be used. On initial gateway setup, a wildcard
certificate for the gateway’s domain can be requested and generated.
This allows for traffic to access the gateway over HTTPS/TLS on
the gateway’s apex domain, as well as single level subdomains (e.g.
gateway.com and subdomain.gateway.com, but not sub.subdomain.
gateway.com), in turn allowing for browser sandboxing.

When a browser requests a transaction from the gateway, for example
https://gateway.com/6BdL...6VzZ, the gateway returns a 301 re-
direct to https://label.gateway.com/6BdL...6VzZ where label is
a Base32 pseudo-unique address derived from the transaction ID. As
the transaction is now being served from a subdomain, the browser’s
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same-origin policy is invoked and the web page is restricted to that
sandbox, giving it its own secure browser context.

Support for DNS & TLS has been implemented to ensure ”backwards com-
patibility” with these technologies. In addition to these traditional systems,
Arweave can also integrate with decentralised name systems.

7.4 Use Cases

The Arweave protocol’s offering of truly reliable, immutable, and decentral-
ised data storage provides significant utility to a wide range of potential use
cases.

Some of the unique benefits offered by the Arweave protocol when addressing
real world use cases include:

• Providing a reliable archive of record. Once data is added to the
blockweave, it cannot be removed or altered, either intentionally or
unintentionally.

• Authenticity. The blockweave offers ’proof of existence’ of a specific
piece of data at a certain point in time, based on the associated trans-
action’s verifiable, reliable timestamp.

• Provenance. Each transaction is linked permanently to the previous
transaction from the same wallet, meaning that end-users can con-
sistently verify the true origin of the data inside any transaction by
wallet address, including that of decentralised applications hosted on
the Arweave network.

• Decentralised application hosting. The blockweave ensures more re-
liable access to applications than any centralised application-hosting
platform, which commonly negatively impact application integrity[5].

• Incentivised data storing and serving. Arweave’s unique mechanism
design robustly encourages the rapid serving of data to all participants
in the network, including end-users (see section 3.4 for further details).

7.5 Example Applications

There is a wide array of live, decentralised applications running on the Ar-
weave network today, each benefiting from the unique advantages detailed
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in the previous subsection of this paper. Here, we will briefly describe a
small number of these decentralised applications:

• ArBoard[61]. A decentralised discussion board allowing users to create
discussion topics within subcategories, to which other users can reply,
vote on popular threads, and view the edit history of any post. All of
this functionality is powered by ArQL, with no external dependencies
or computation.

• AskWeave[44]. An Arweave community-created application hosted on
the blockweave, offering a free-form Q&A-style forum functionality.
Users can ask and answer questions, and tip their favourite responses
using AR tokens directly within the application itself.

• Weavemail[66]. A decentralised, robust, permanent email client hosted
on the Arweave network. In addition to sending immutable email on
the blockweave itself, users may also use this as a method to securely
send and receive AR tokens with other Weavemail users.

• ArweaveID[43]. Another Arweave community-created application, this
enables users to claim a unique username linked to their Arweave wal-
let address. Most interestingly, a number of other community de-
velopers have integrated ArweaveID into their own permaweb applica-
tions, including the aforementioned AskWeave, meaning that users can
utilise the ’unsiloed’ feature of permaweb data (i.e. that the block-
weave can act as a single, universal data source for any permaweb
application). In this instance, this means that users can have one
universal username for all permaweb applications, without having to
register for individual user accounts on every individual platform.

8 Future Work

8.1 Succinct Proofs of Access

The primary scalability challenge presented by the current Arweave archi-
tecture is the necessity for pushing all transaction data to all nodes during
the writing of the data into the network. While the current architecture
of the system allows for approximately 310 million typically-sized pieces of
Arweave data to be stored per year (as of block 223,280), substantial im-
provements are possible in this area. The core Arweave development team
plans to offer these improvements to the community by introducing a new
optional data access proof mechanism: Succinct Proofs of Access.
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Transactions secured by the Succinct Proof of Access mechanism replace the
direct embedding of data within the blockweave with storing only Merkle
roots of said data. This introduces a number of trade-offs. While it allows
for consensus about the entry of data into the blockweave to be acquired
without all participating nodes receiving a full copy of the data (if, for
example, they do not have excess storage capacity with which to store said
data), it also removes the proof of distribution guarantees presented by
traditional blockweave data structures. This allows transactions to contain
massive quantities of data, but loses the certainty that said data was ever
fully seeded to the network.

Succinct Proofs of Access to transaction data can be provided by foreign
nodes during block confirmation with a high degree of confidence, by simply
then transferring a series of Merkle paths through the Merkle tree generated
for the dataset. This has the advantage of allowing vast amounts of data to
be added to the network quickly, but does not provide the same data avail-
ability guarantees as traditional Proof of Access. Subsequently, Succinct
Proofs of Access will be provided as an optional feature for those with large
datasets that require long-term storage with high levels of redundancy, but
do not require that certainty be achieved about the data ever being fully
publicly available.

8.2 Wallet Logs

Further improvements are also planned for the system of Wallet Lists in
the Arweave network. Wallet Lists (a mechanism for maintaining accounts,
balances, and avoiding replay attacks) currently represent a high proportion
of the data storage overhead in the Arweave network. Each wallet ever used
in the block weave is represented in the Wallet List in each block. It is
planned that these wallet lists will be replaced with append-only wallet logs.
By appending a new entry to the wallet storage data structure each time a
balance is changed, the storage complexity drops from Oblocks ∗ wallets to
Otxs + blocks. Further, the wallet log mechanism does not materially affect
wallet data look-up times, as the log structure can be effectively ’compacted’
once every given number of blocks. This compacting mechanism keeps the
size of the structure manageable relative to the number of wallets in the
network. Further, this mechanism also allows for O1 verification of new
block contents.
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8.3 Fast Find

As the Arweave network incentivises all network participants to store as
much of the blockweave as possible, the issue of rapid data location in a de-
centralised web is quickly diminished when compared to typical distributed
hash table-based approaches. By ensuring that there are large numbers of
replications of each piece of data in the network (approximately 750 at the
time of writing) the game of finding data turns from ‘finding a needle in a
haystack’ to ’finding some hay in a barn’, since replications are so abundant
in the Arweave network. Nonetheless, at some point optimisation of data
location times may be desirable. We expect that this is likely to take the
form of modified AIIA agents that reward players not just for providing fast
access to data they store locally, but also for re-directing participants to
nodes that are able to provide the data.

As in typical AIIA meta-games, each node in the network is selfishly in-
centivised to incentivise the expression of this pro-social behaviour in other
nodes. The implementation of each independent AIIA agent will define ex-
actly how participants maintain tables for routing requests of other nodes
towards likely holders of the data they are requesting. Nonetheless, it is
expected that eventually these agents will closely resemble next-hop routing
layers, similar to the structure of the existing internet.

9 Conclusion

In conclusion, we have presented the Arweave family of protocols: a modular
system for achieving permanent replication and recall of knowledge and his-
tory, backed by sustainable economic mechanisms. As well as promoting the
perpetual storage of information through a novel storage endowment, Ar-
weave also promotes the distribution of this information through adaptable
and robust off-chain incentive mechanisms.

On top of the primary Arweave protocol layer, we have also presented an out-
line of the ‘permaweb’: a permanent, decentralised, and resilient web. Unlike
the traditional web, all content in the permaweb is immutable, timestamped,
and cryptographically signed (ensuring strong authorship properties).

The permaweb is currently in its infancy. It has been live for 500 days, and is
growing at an approximate rate of 2,500 web applications and pages per day.
Further to the presented description of the current protocol implementation,
we have also outlined areas of potential future work, as well as adaptive
mechanism designs to encour these developments.
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10 Appendices

10.1 Hard Drive Capacities and MTBF Over Time

Please see the following Arweave transaction:

https://arweave.net/wufZ10dlzwfPFTNKr3uRAyeMRfMdkNx1iG9yjolRbv8

10.2 Anatomies

This section will describe a range of data structures and their contents.

10.2.1 Block Data Structure

• Transactions: A list of zero to many transactions (see 10.2.4 Trans-
action Data Structure).

• Block Size: The sum of the number of bytes of the data in each
transaction in Transactions.

• Timestamp: The decimal representation of the Unix Timestamp
when mining the block started.

• Reward Address: Up to 32 bytes. If this matches a Wallet Address
in the previous block’s Wallet List, then this Wallet Address will get
the reward.

• Previous Block: The Independent Hash of the previous block.

• Height: The zero-based sequential number of this block in the Block
Weave.

• Weave Size: The sum of the Block Size of this block and the Weave
Size of the previous block.

• Storage Endowment: The number of Winston in the endowment
(see 3.2.3).

• Hash List: A list of all the Independent Hashes starting from the
previous block down to the Genesis Block

• Hash List Merkle Root: The SHA-384 hash of the concatenation of
the previous block’s Hash List Merkle Root and the previous block’s
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Independent Hash. For the Genesis Block, the value is empty. Ba-
sically, this is the root of a completely unbalanced Merkle tree for all
Independent Hashes from the Genesis Block up to the previous block.

• Wallet List: A list of all wallets ever received any AR, so called
Active Wallets, after applying the transactions in this block. The list
is ordered by Wallet Address.

– Wallet Address: The SHA-256 hash of the wallet’s public key.

– Last Transaction: The ID of the last mined transaction created
by this wallet, i.e. the last mined transaction where the SHA-256
hash of Owner for the transaction is the Wallet Address.

– Balance: The current balance of AR for the wallet in Winston.
It’s adjusted by these rules:

∗ The block contains a transaction where the SHA-256 hash of
Owner is matching the Wallet Address. The balance is then
reduced by the Reward of the transaction. Negative balance
is not allowed.

∗ The block contains one or more transactions where the Tar-
get is matching the Wallet Address. The balance is then
increased by the sum of the Quantity values of these trans-
actions. If this is the first time this Wallet Address receives
any AR, its entry in the Wallet List will be created according
to these rules:

· The balance will be set to the transaction’s Quantity
minus 25 AR. This represents the Wallet Creation Fee
which is spam filter for active wallets.

· The wallet will only be created if the quantity is 25 AR
or more.

· The transactions are applied in the order they are spe-
cified in the block.

∗ The Reward Address is matching the Wallet Address. The
balance is then increased by the mining reward for this block
(see 3.2.3).

• Block Data Segment: A SHA-384 hash of the concatenation of the
following:

– Independent Hash of the previous block.

– Dependent Hash of the previous block.

– The decimal representation of Timestamp.

– The decimal representation of Last Retarget.

– The decimal representation of Height.
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– Concatenation of every value in Hash List.

– The Serialised Representation of Wallet List.

– Reward Address.

– The decimal representation of Storage Endowment.

– The Serialised Representation of this block’s Recall Block (see
2.1 The Recall Block, Proof of Access, and the Blockweave).

– Concatenation of the Serialised Representation of each transac-
tion in Transactions.

– Hash List Merkle Root

• Dependent Hash: The SHA-384 hash of the concatenation of Block
Data Segment and Nonce.

• Nonce: Affects the Dependent Hash and must be chosen so that the
Dependent Hash fulfils the Difficulty. Up to 512 bytes.

• Difficulty: The number the PoW hash must be greater than. The
value is inherited from the previous block except if this is a retarget
block where the value may increase or decrease proportionally to the
ratio between the target time and the actual time.

• Last Retarget: The Timestamp of the last block where Retarget
happened. If this is a retarget block, then the value should be this
block’s Timestamp.

• Cumulative Difficulty: The expected number of hashes tried by the
network, summed up over previous blocks of this fork.

• Independent Hash: The Deep Hash (see 10.2.2 Deep Hash) of a list
of the following:

– Nonce.

– Previous Block.

– The decimal representation of Timestamp.

– The decimal representation of Last Retarget.

– The decimal representation of Difficulty.

– The decimal representation of Cumulative Difficulty.

– The decimal representation of Height.

– Dependent Hash.

– Hash List Merkle Root.

– The concatenation of all transaction IDs of the transactions in
Transactions.
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– The Serialised Representation of Wallet List.

– Reward Address or ”unclaimed” if empty.

– Empty list.

– The decimal representation of the Storage Endowment.

– The decimal representation of Weave Size.

– The decimal representation of Block Size.

• Serialised Representation: concatenation of the following:

– Nonce.

– Previous Block.

– The decimal representation of Timestamp.

– The decimal representation of Last Retarget.

– The decimal representation of Difficulty.

– The decimal representation of Height.

– Hash.

– Indep Hash.

– The concatenation of the Serialised Representation of the trans-
actions in Transactions sorted by Transaction ID.

– The concatenation of each element of Hash List.

– The Serialised Representation of Wallet List.

– Reward Address.

– Decimal representation of Weave Size.

10.2.2 Deep Hash

Deep Hash is a hash algorithm which takes a nested list of values as input
and produces a 384 bit hash, where a change of any value or the structure
will affect the hash.

deep_hash(List) when is_list(List) -> hash_bin_or_list(

List).

%%% INTERNAL

hash_bin_or_list(Bin) when is_binary(Bin) ->

Tag = <<"blob", (integer_to_binary(byte_size(Bin)))/

binary >>,

hash_bin(<<(hash_bin(Tag))/binary , (hash_bin(Bin))/

binary >>);
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hash_bin_or_list(List) when is_list(List) ->

Tag = <<"list", (integer_to_binary(length(List)))/

binary >>,

hash_list(List , hash_bin(Tag)).

hash_list([], Acc) ->

Acc;

hash_list([Head | List], Acc) ->

HashPair = <<Acc/binary , (hash_bin_or_list(Head))/

binary >>,

NewAcc = hash_bin(HashPair),

hash_list(List , NewAcc).

hash_bin(Bin) when is_binary(Bin) ->

hash_sha384(Bin).

Listing 1: Deep Hash reference implementation in Erlang

10.2.3 Blockshadow Data Structure

A Blockshadow is a slimmed-down version of the full Block where the re-
moved data can be reconstructed from other data. This makes the block-
shadow tiny compared to the full block, which makes it fast and cheap to
propagate between nodes in the network. See 2.3 Blockshadows.

A blockshadow is the same as the block with these differences:

• Transactions: Instead of the list of transactions, the blockshadow has
a list of the transaction IDs. When the blockshadow of a new block
is propagated though the network, the receiving node is likely to have
the transactions in its mempool, making it possible to reconstruct the
full list of transactions from the transaction IDs.

• Hash List: The Hash List is trimmed down to only include the first 50
entries. The full Hash List can be reconstructed by taking the Hash
List of the previous full block and pre-pending the previous block’s
independent hash.

• Wallet List: The Wallet List is not included. It can be reconstructed
by the Wallet List of the previous full block and the transactions of
this block.

65



10.2.4 Transaction Data Structure

• Data: Between 0 and 10,485,760 bytes of arbitrary data.

• Owner: The public key of the RSA key-pair signing this transaction.

• Quantity: Amount of Winston to send to another wallet.

• Target: The Wallet Address of the recipient of the Winston specified
by quantity. No validation may be performed of the validity. Up to
32 bytes.

• Reward: The amount of Winston payed by Owner which will go to
the Storage Endowment (see section 3.2.3.

• Tags: A list of any number of tags where its Serialised Representation
is up to 2048 bytes.

– Tag: A key-value pair for arbitrary metadata.

∗ Name: The key. Unlimited number of whole bytes of data.

∗ Value: The value. Unlimited number of whole bytes of data.

∗ Serialised Representation: A concatenation of the Name
and Value.

– Serialised Representation: A concatenation of each tag’s Seri-
alised Representation.

• TXanchor: TXowner’s last processed transaction ID or the independent
hash of one of the last 50 blocks. Empty for the first transaction.

• Signature Data Segment: A concatenation of the following fields
in the following order:

– Owner.

– Target.

– Data.

– The decimal representation of Quantity.

– The decimal representation of Reward.

– Last TX.

– The Serialised Representation of Tags.

• Signature: The RSA-SHA256 signature of Signature Data Segment
for the RSA key-pair where the public key is Owner.

• ID: SHA-256 hash of the Signature.
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• Serialised Representation: The concatenation of the following:

– ID.

– Last TX.

– Owner.

– The Serialised Representation of Tags.

– Target.

– The decimal representation of Quantity.

– Data.

– Signature.

– The decimal representation of Reward.
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